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Summary
This paper presents a statistical framework to monitor the performance of an oper-

ational concrete arch dam using sensory data acquired during its initial service life.

One of the major challenges in dealing with a newly constructed dam is to predict its

long-term behaviour by forecasting appropriate thresholds using limited data exhibit-

ing nonstationarity. In this paper, a hybrid model is implemented to predict dam

responses using environmental—hydrostatic, seasonal, and temperature—as well as

age-related variables. The data from multiple sensors are first analyzed using princi-

pal component analysis to incorporate overall dam behaviour into a prediction model.

The proposed prediction framework is then employed to estimate the residuals and

control limits required to calculate thresholds under nonstationary operating condi-

tions during its initial service life. The dam performance is then monitored using

statistical control charts and anomalies are detected by comparing the test statistics,

square prediction error, and Hotelling T-squared, calculated from the residuals with

the preset control limits. The issue of limited data is addressed by updating the model

parameters and thresholds periodically, which is aimed at minimizing the false alarm

rate. The proposed method is demonstrated using a 130-m-high double-arch concrete

dam located in Bulgaria.
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1 INTRODUCTION

Concrete dams play an important role in the socioeconomic growth of a nation by providing and facilitating irrigation, hydro-

electric power, flood control, navigation, and tourism. They can be exposed to excessive operational and environmental loads

due to floods, earthquakes, or seasonal variations in temperature during their service life. Their performance could also suffer

due to age-related deterioration, for example, creep and shrinkage. Multiple catastrophic failures of concrete dams have been

recorded in the past such as the Austin dam in Pennsylvania,[1] Canyon Lake dam in Texas,[2] Taum Sauk dam in Reynolds

County,[3] Lake Delhi dam in Iowa,[4] and Vishnu-Prayag dam in India.[5] Robust and reliable data-driven health monitoring

strategies have since been regarded as crucial in order to prognose failures from anomalous behaviour during their service life.

It is equally crucial to put in place such strategies during the initial service life of the dam, as failures (catastrophic or otherwise)

could potentially occur at any time following construction.

With the availability of reliable low-cost sensors to an advancement in their miniaturization, data storage, low-power con-

sumption, and communication technologies, there has been a marked adoption of data-driven prediction and automation methods

for structural health monitoring (SHM) of dams.[6–9] In these approaches, data collected from in situ sensors are utilized to
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develop prediction models, data analytics to prognose failures, and to schedule dam safety programs. Dams are increasingly

being regarded as critical structures, which call for mandatory application of SHM to improve their performance under natural

hazards and to track their structural integrity over their lifetime.[10] These structures have disproportionately large consequences

of failure, which underscores the need to implement SHM during construction and also throughout their service life.

SHM tasks for dams are typically carried out by calibrating a prediction model between input variables such as environmental

and age-related parameters, and the monitored dam responses, as illustrated conceptually in Figure 1. Existing prediction models

can be broadly classified into two categories: deterministic and statistical models.[11, 12] Deterministic models utilize numerical

techniques such as finite element method to predict the dam responses. The advantage of deterministic models is that they can

be applied during the first filling of the reservoir, which is generally considered to be the most critical period in the service life

of a dam. Andonov et al.[13] used such a model to demonstrate the safety of Tsankov Kamak dam (TK dam) located in Bulgaria

under earthquake-induced natural hazards. However, such models require significant modeling effort, model calibration (which

is often cumbersome), and are inadequate to represent nonlinear processes such as damage and leakage.[14, 15]

On the other hand, statistical models operate directly on measured data (i.e., they fit models to the data directly) without

utilizing physics-based models as predictors. These employ data-driven techniques such as neural networks,[8] support vector

regression,[16, 17] and multivariate linear regression [6, 7, 9, 18–20] to correlate environmental factors (water level, ambient temper-

ature, and creep in concrete) with measured dam responses (e.g., displacement, crack, concrete stress, and strain). Ahmadi [21]

proposed a hydrostatic-seasonal-time (HST) model to model the response of a dam and applied it to displacement and strain

data obtained from Idduki dam in India and to Daniel Johnson dam located in Canada. HST model was also used to model dis-

placement measurements of a rock-fill embankment dam.[7] A variant of HST model was proposed by Mata et al.[9] in which

seasonal functions are replaced by the recorded temperature to better represent temperature effects. The authors proposed a

hydrostatic-thermal-time (HTT) statistical model to interpret the displacement responses of Alto Lindoso dam in Portugal. Loh

et al.[22] proposed a method to establish thresholds for an early warning system and applied it to the Fei-Tsui dam in Taiwan.

The displacement data measured for a period of 22 years were analyzed using singular spectrum analysis with neural networks.

The authors showed that the proposed method successfully captures periodic fluctuations resulting from seasonal and daily

variations in temperature as well as trends due to creep.

Nearly all previous studies utilize long periods of measured data to model steady-state operating conditions. In contrast,

new builds show nonstationarities with respect to measured parameters, which makes data-driven modeling a challenging task.

Another important issue is data reduction from hundreds of monitored instruments and the identification of critical parameters

of dam responses. Previous studies have utilized principal component analysis,[6] artificial neural networks,[23, 24] blind source

separation,[25] artificial immune algorithm,[26] independent component regression,[27] cointegration theory,[28] and time-varying

Bayesian approach[29] to model and predict the dam responses. Time-frequency analysis (short-time Fourier transform) was

employed by Mata et al.[30] to identify the effect of daily variations of air temperature on the structural response of a concrete

dam. In their study, short-time Fourier transform was used to identify the influence of the daily variation of air temperature on

the horizontal displacement of concrete dams and to track its variation as a function of time, which was then used to predict

the future dam performance. However, most of these data-driven and pattern recognition techniques are yet to be successfully

applied where only the initial service life data (i.e., limited baseline information) is available. In a recent study, Cheng et al.[19]

proposed the use of control charts for dam safety monitoring. However, the aforementioned study is limited to univariate control

charts that can be used to monitor one variable, the dam displacement. Usually dam responses are correlated and monitoring

each component separately may result in an increase in the false alarm rate.

In this paper, a hybrid prediction model including hydrostatic, seasonal, temperature, and time (HSTT) is developed to better

predict dam performance during initial service life. The thresholds are set based on residuals between the measured and predicted

responses, in order to alert the owner of any abnormal behaviour in the dam responses, and these thresholds are updated as more

FIGURE 1 Structural health monitoring of a dam
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data becomes available. Univariate as well as multivariate control charts are integrated to monitor multiple dam responses. The

proposed method is then applied to the strain and displacement data of TK dam located in Bulgaria.

2 DAM INSTRUMENTATION

This study utilizes measurements obtained from the TK dam (Figure 2), a double curvature concrete arch dam located on

the Vacha river in south-western Bulgaria (see Table 1 for dam details). The stability of a dam is based on the load bearing

capacity of the rock, which acts as the abutment. The main forces acting on the dam are the hydrostatic pressure due to the

reservoir behind it, uplift water pressure beneath the foundation, and self-weight. Other forces that affect the dam performance

are temperature, chemical reactions, settling, silt accumulation, and earthquakes. Concrete and air temperatures, reservoir water

level, displacements in the superstructure, and in its foundation, rotations, joint movements, strains, and stresses in the concrete,

pressures, and discharges in the foundation all contain vital information in order to predict the short- and long-term behaviour

of the dam and are good candidates for measurements.

As shown in Table 2, several types of instruments were installed, and data were collected using an extensive data collection

system. Among these, dam displacements and strains inside concrete are selected to be investigated in this paper.

FIGURE 2 Tsankov Kamak dam in Bulgaria (a) upstream and (b) downstream view

TABLE 1 Tsankov Kamak double-arch concrete dam details

Total crest length 480.0 m Maximum height 130.5 m

Crest length (curved part) 340.0 m Maximum base width 27.6 m

Maximum crest width 8.8 m Wall volume ≈ 4 × 105m3

Reservoir capacity 1.1 × 108m3 Power capacity 2×40 MW

Total concrete poured 3.1 × 105m3 Power generation 188 GWh/a

TABLE 2 Instruments used in Tsankov Kamak dam

Instrumentation Parameters measured

Strain gauge Strain inside concrete block

Total pressure cell Stress variation inside concrete block

Thermometer (telethermometers) Concrete temperature

Joint meter Effectiveness of the joint grouting

Extensiometer Rock deformation under the dam

Piezometer (inside the dam) Uplift pressure

Piezometer (outside the dam) Ground water pressure

Telependulums Horizontal deformation of the dam

Weather station Air temperature, water level, etc.
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FIGURE 3 Dam instrumentation: strain gauges (SGs), direct (DP), and inverted pendulum (IP). There are 21 blocks and four internal horizontal

galleries across the dam

FIGURE 4 Variation of temperature and water level

Figure 3 shows direct pendulum (DP), inverted pendulum (IP), and strain gauges (SGs) installed across the TK dam. As

shown in Figure 3, the instrumentation layout was divided into three major cross sections with left (L), middle (M), and right

(R) bank profiles, which are stored in a central data acquisition system. A typical instrument is refereed in the database based

on its location, that is, the block number and the row number.

For example, SG labeled SG-L4-31 is situated in L4 block, 31st row (each row is approximately 3-m high, with 43 rows)

from the top. A scale of row numbers with dam height is also shown Figure 3 (left part). Rows 4, 12, 22, and 29 correspond to

the inspection galleries IG1, IG2, IG3, and IG4, respectively. The data analyzed in this paper corresponds to a period between

October 2010 and June 2014, resulting in more than 30,000 observations per variable. For illustration purposes, Figure 4 shows

the time evolution of the reservoir water level and air temperature.

2.1 Displacement measurements
DP and IP are used to measure dam displacements along its height. Pendulum method of displacement measurement is based

on the relative position of a steel wire through the vertical line of the dam. As shown in Figure 5, the upper end of the wire

of the DP is anchored to wall of the inspection gallery, whereas for an IP, the lower end is anchored in the deep zone of the

foundation, which is assumed to not be affected by the dam displacement.

In this way, an IP measures the absolute dam displacement, whereas a DP measures the relative displacements[9] between the

levels it is installed.
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FIGURE 5 Direct pendulums and inverted pendulums (IPs) installation details

FIGURE 6 Relative displacement (downstream radial direction is positive) profile at different levels of left (L), middle (M), and right (R) blocks
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The total displacement at any level can be found by summing relative DP readings across levels. The relative displacement in

the radial direction measured at different levels for L-4, M, and R-4 block are shown in Figure 6. Note that in L-4 and R-4 block

pendulums are installed in rows 4, 12, 22, and 29, whereas in the middle block it is in row number 12, 22, 32, and 43. Similar

to strain measurements, most of the pendulum readings also show seasonal behavior clearly.

2.2 Strain measurements
Figure 7 shows a typical SG installed in the dam superstructure. The SGs were mounted in a 6-gauge rosette fixture, for

three-dimensional strain orientation measurements (45◦ in each plane), and each recess (130 × 110 × 50 cm) also includes a

no-stress strain (dummy gauge) gauge assembly. The purpose of the dummy SG is to differentiate between measured strains

due to hydration of the concrete and strains resulting from true loading of concrete.[31]

The six strain components (after subtracting the zero-stress strain measurements) corresponding to SG-L4-31 and SG-R4-31

are shown in Figure 8, which can be used to calculate the principal strains and their orientations. It may be noted that the

upstream strain does not show seasonal trends compared to the downstream gauge which shows clear seasonal trends. As well,

FIGURE 7 Strain gauge installed in Tsankov Kamak dam

FIGURE 8 Variation of strains with time in the up-stream and down-stream faces
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the downstream strain component 𝜖zz for SG-L4-31 shows a decreasing trend with time which can be considered as irreversible
[8, 28, 29] due to residual deformations during the initial adjustment period of the dam and foundation during reservoir filling,

dissipation of heat of hydration, and chemical reactions in concrete or linear bias in the SGs used. In order to investigate this

further, zero-stress strains are shown in Figure 9. For all the four locations, these readings seem to be fairly constant, with an

absence of significant trend. Moreover, it can be concluded that the decreasing trend in strain is more prominent for the first

few months during the first filling of the dam, which appears to stabilize over time. The seasonal effect is also clearly evident

FIGURE 9 Dummy strain gauge readings in L4 and R4 block at level 31

FIGURE 10 Flowchart of the proposed approach
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in the downstream zero-stress gauges (temperature effect for the vibrating wire gauges themselves) compared to the upstream

gauges where the temperature is rendered more or less constant due the presence of water.

3 METHODOLOGY

A three-step procedure is proposed for the SHM of the dam under study: (a) dimensionality reduction and feature selection from

dam monitoring data, (b) development of a statistical model, and (c) setting up thresholds by minimizing the false alarm rate

and comparing the dam response against preset thresholds. A flowchart showing the key steps is presented in Figure 10. Each

of these three steps is explained in detail, next.

3.1 Dimensionality reduction
The first step is to extract the trending parameters (features) from the monitored data (strain and displacement). This can be done

locally where data from a particular sensor is used or globally by aggregating similar sensors installed across a block of the dam.

The dimensionality reduction for the latter is achieved using principal component analysis.[32] For example, crest displacement

is a critical parameter in dam monitoring and is monitored locally. However, several thermometers are installed across the dam

to measure the temperature. Figure 11 shows the variation of temperature upstream, downstream, and inside the central block at

different heights. Note that, the thermometers are installed in row numbers 6, 14, 24, and 34, respectively, which are two rows

(≈ 6m) below the pendulum locations.

It can be seen that the temperature is relatively constant on the upstream face, which gradually increases in the middle and to

the downstream face of dam. Also, the temperature becomes relatively constant with increasing depth in the upstream face, but

the seasonal trends are clearly evident in the downstream face at all depths. In general, the temperature across a block fluctuates;

hence, using a particular sensor might result in inaccurate model predictions.

FIGURE 11 Temperature measured at different levels (6, 14, 24, and 34) from the central block, upstream (U), centre (M), and downstream (D)
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FIGURE 12 The first two principal components of temperature for the central block

FIGURE 13 Principal strains at SG-L4-31 down-stream

When principal component analysis is performed on the temperature data acquired from all locations (see Figure 12), the first

two components cumulatively explain 98% of total variation in the dam temperature and can be used as a global temperature

indicator in the ensuing model.

Furthermore, dimensionality reduction can also be employed locally where a sensor measures multiple observations such

as from an SG. The SG used in this study measures six strain components (in xx, yy, zz, xy, yz, and xz directions) and the

corresponding strain matrix is represented by

𝜖 =

[
𝜖xx 𝜖xy 𝜖xz
𝜖xy 𝜖yy 𝜖yz
𝜖xz 𝜖zy 𝜖zz

]
. (1)

The principal strains (i.e., 𝜖p1, 𝜖p2, and 𝜖p3) are found through an eigenvalue decomposition of the strain matrix:

𝜖 = ΛPΛT , (2)

where Λ is an orthogonal matrix and P is a diagonal matrix whose entities (𝜖p1, 𝜖p2, and 𝜖p3) are the eigenvalues of 𝜖.

Figure 8 shows strain components measured in L4 block in row 31. For the downstream data at this location, principal strain

components are extracted using Equation 2. The major and minor strain components 𝜖p1 and 𝜖p2 are shown in Figure 13.

3.2 Model fitting
Once the features are extracted, they are used to calibrate the model. The proposed statistical HSTT model is written as

y = yH + ys + yT + yt + 𝜖, (3)

where y is the dam response and yH, ys, yT, and yt are the contributions due to hydrostatic load, seasonal effect, variation in

temperature and age related deterioration. The error term 𝜖 is assumed to be independent and identically distributed. Unlike
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existing models,[14, 33, 34] in the literature, which include the terms yH, ys, and yT only, the proposed method also accounts for

age-related deterioration by introducing the yt term. The following functional form for yH, ys, and yt is considered:

yH(H) =
N∑

i=1

aiHi; yT (T) =
M∑

i=1

biTi
i ; yt(t) = c1t + c2 exp(−t);

ys(𝜃) = d1 sin(𝜃) + d2 cos(𝜃) + d3 sin(𝜃) cos(𝜃); with 𝜃 = 2𝜋t
24 × 365

;

(4)

where ai, bi, c1, c2, d1, d2 and d3 are constants, H is the reservoir water level, T is the temperature, t is the time in hour from the

beginning of dam operation, and N,M are the polynomial order with respect to H and T, respectively. In contrast to existing

models, yH is modified by ignoring the higher orders terms of H due to small fluctuations in reservoir level during the moni-

toring period. Moreover, a linear and quadratic variation of hydrostatic pressure and temperature related effect are considered

respectively. Age effect is considered as a sum of linear and exponential terms.

The parameters of the above model can be estimated using the least squares method by minimizing the sum of squared residual

errors. Let Y and X denote the dam response and transformed variables, respectively, then the estimate of coefficient Θ can be

given by

Θ̂ = (XTX)−1(XTY)
X = [H,H2,T, t, exp(−t), sin(𝜽), cos(𝜽), sin(𝜽)cos(𝜽)]
Y = [y1, y2, ... … yt]; Θ = [a1, a2, b1, c1, c2, d1, d2, d3].

(5)

The estimated model is used to check the future dam responses and setting up the thresholds.

As explained earlier, due to the initial adjustments of the foundation during the filling of the reservoir, there is a significant

temporal effect causing nonstationarity in the dam responses as shown in Figure 13. However, the proposed model as shown

above in Equation 3 itself is a stationary model. To overcome this limitation, the regression coefficients are tracked over time

using recursive estimation. In order to formulate the recursive model, let us consider Equation 3 in the following form:

y(t) = 𝝓T (t)Θ + 𝜂(t) (6)

where Θ = {a1, a2, b1, c1, c2, d1, d2, d3} is the vector of unknown regression coefficients. Now, a weighted recursive least square

estimation requires finding Θ by minimizing the weighted cumulative squared error:

Jk(Θ̂) =
1

k

k∑
t=1

𝜆k−t
[
y(t) − 𝝓TΘ̂(t − 1)

]2

, (7)

which gives the following recursive estimation of regression coefficients35:

Θ̂(t) = Θ̂(t − 1) + K(t)
[
y(t) − 𝝓TΘ̂(t − 1)

]
K(t) =

P(t − 1)𝝓(t)
𝜆 + 𝝓T (t)P(t − 1)𝝓(t)

P(t) = 1

𝜆

[
P(t − 1) − K(t)𝝓T (t)P(t − 1)

]
.

(8)

The forgetting factor, 𝜆 in Equation 8 is a weighting parameter (0 < 𝜆 ≤ 1) that may be used to weight recent data more heavily.

K(t) is a gain on the the residual, whereas P(t) is the covariance matrix of unknown parameters. In this way, the nonstationary

nature of the parameters can be tracked during reservoir filling and these parameters can be adjusted periodically to achieve

steady-state conditions.

3.3 Setting thresholds
One of the main goals of a dam monitoring system is the timely detection of any anomalous behaviour, which is indicative of

impending failure or potential faults. Anomaly detection for dam safety is generally done by setting up an alarm limit based

on the analysis of each individual instrument and plotting the control charts[36] in real time. With limited data for a long life

system such as a dam, selection of an appropriate threshold is a challenging task. Moreover, due to noise in measurements and

malfunctioning of instruments, false alarms in control charts are unavoidable.

In this paper, univariate and multivariate control charts are used[36, 37] for outlier detection in the dam behaviour utilizing

control limits based on residuals. The squared prediction error (SPE) norm is defined as
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SPE = ||y − ŷ||2, (9)

where y is the measured dam response and ŷ is the model prediction, both of which are used for univariate control chart prepa-

ration. The selection of upper control limit (UCL) is based on fitting a distribution to SPE and choosing values corresponding

to 𝛼1 (UCL1) and 𝛼2 (UCL2) percent of cumulative distribution function. A more general nonparametric approach of distri-

bution fitting, namely, kernel density estimation is used here, which relaxes the distributional assumption of SPE.[38] Given n
values of SPE statistics (SPE1, SPE2, ..., SPEn) computed from in-control observations, the distribution of the SPE statistics can

be estimated by the following kernel function:

f̂h(t) =
1

n

n∑
i=1

K

[(
t − SPE2

i

)
h

]
, (10)

where K and h are the kernel function and smoothing parameter, respectively. The control limits can be determined by a percentile

of the estimated kernel distribution. The UCL associated with 100.(1-𝛼)th percentile can be calculated by

UCL = f̂h(t)−1(1 − 𝛼). (11)

For example, Figure 14 shows control limits UCL1 and UCL2 corresponding to 𝛼1 = 0.95 and 𝛼2 = 0.99. The SPE value

corresponding to dotted and solid line is assigned to UCL1 (i.e., warning limit) and UCL2 (i.e., alarm limit), respectively.

For some instruments, the measured dam responses are correlated and simultaneous monitoring is required. For example,

Figure 15 shows the correlation plot for principal strain residuals for L4 block in 31st row. Considering the dependency between

the two variables, both responses can be monitored using a combined chart.

This is achieved by plotting Hotelling T2 multivariate control chart. Similar to SPE, another test statistic called T2 is calculated

from the residuals (𝜂 = y − ŷ), and given as

T2 = (𝜼 − 𝜼̄)TS−1(𝜼 − 𝜼̄), (12)

where 𝜼 is the residual matrix (row is the observation and column is the process variable), 𝜼̄ is the sample mean vector, and S
is the sample covariance matrix estimated from in-control process.[38]T2 statistics follow the F distribution with p and (n − p)

degrees of freedom and control limit can be determined by Equation 13:

UCL =
p(n + 1)(n − 1)

n2 − np
F𝛼,p,n−p, (13)

where n and p are the number of observations and process variables, respectively. In other words, the 100.𝛼 upper percentile of

an F distribution is used as the control limit, where 𝛼 is the type I error rate (i.e., false alarm rate).

FIGURE 14 Two upper control limits for squared prediction error (SPE) estimated using Kernel density estimation method: (a) 1, (b) 2, and (c) 3

years of data used. UCL= upper control limit
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4 DEMONSTRATION OF THE PROPOSED METHODOLOGY

4.1 Application to displacement data
First, the proposed method is illustrated for the displacement response in the radial direction. The deformation of dam occurs

mainly due to water level and temperature. An increasing water level pushes the structure downstream, whereas a higher tem-

perature causes the structure to shift in the upstream direction. Figure 16 shows the absolute displacements D1, D2, D3, and

D4 for central block measured in 12th, 22nd, 32nd, and 43rd row, respectively, relative to anchored point above that level. The

absolute displacement at a particular level is obtained by summing the relative displacements at lower elevations. For example,

the crest displacement D1 is given by

D1 = 𝓁1 + 𝓁2 + 𝓁3 + 𝓁4 + 𝓁IP, (14)

where 𝓁i’s are the relative displacements and 𝓁IP is the indirect pendulum reading.

Next, the proposed HSTT model is employed on absolute displacements of central block, where the effect of water level,

FIGURE 15 Correlation plot between principal tensile and compressive strain residuals

FIGURE 16 Absolute displacements obtained using direct and inverted pendulums

TABLE 3 HSTT model parameters estimated from the dam displacements in middle block

H2 sin𝜃 t 𝜎𝜖

HSTT H (10−3) sin𝜃 cos𝜃 × cos𝜃 T (10−3) exp(−t) R2 (mm)

D1 −1.84 8.4 −21.8 23.5 4.98 0.06 1.14 6.76 0.98 2.88

D2 −1.34 6.5 −17.5 17.3 3.74 0.04 0.42 −0.49 0.99 2.09

D3 −0.52 2.6 −10.4 9.1 2.10 0.01 −0.20 −7.90 0.98 1.24

D4 0.24 −1.2 −1.1 0.1 0.20 −0.01 −0.26 −7.15 0.93 0.53

Note. HSTT= hydrostatic, seasonal, temperature, and time.
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temperature, and seasonality are taken as yH = a1H+a2H2,YT = b1T, and ys = d1sin(𝜃)+d2cos(𝜃)+d3sin(𝜃)cos(𝜃), respectively.

The time effect is negligible in the period being analyzed and included in the model for long-time monitoring. Table 3 shows

the estimated model parameters, R2 value, and standard deviation (𝜎𝜖) of error. The high R2 value (>0.98 for D1,D2, and D3)

and low 𝜎𝜖 (<3 mm) show excellent model performance under displacement modeling.

In contrast to the HSTT model, in HST and HTpcaT models, the water level is normalized as h = H−Hmin

Hmax−Hmin

. In a previous

work,[9] the authors demonstrated that the fourth power of h is highly correlated with the dam deformation, and the displacements

due to seasonal variations (ys) can be captured either by a sum of two sinusoids (as in HST) or can be expressed in terms of

principal components of temperature (as in HTpcaT). Under these assumptions the HST and HTpcaT models can be given as

HST ∶ y = ah4 + d1sin𝜃 + d2cos𝜃 + k,
HTpcaT ∶ y = ah4 + b1PC1 + b2PC2 + k.

(15)

The performance of HSTT model can be compared with respect to these models. The principal components used in HTpcaT
model are discussed in Section 3 and shown in Figure 12. The estimated parameters, R2, and standard deviation of residuals are

given in Table 4. In general, the R2 value is maximum and the standard deviation of residuals (𝜎𝜖) is minimum for the HSTT

model at all levels of displacements. It is also important to mention that the HST model showed to be more effective than HTpcaT
at higher elevations (for D1 and D2). Once the model is calibrated, the model predictions can be used to set the thresholds for

anomaly detection using control charts.

The thresholds for dam displacement in this paper are based on square prediction errors as discussed in Section 3. For a

structure, where the first few years of operation are critical and at the same time monitoring data is limited during this period,

TABLE 4 Parameters estimated from the dam displacements in the middle block

HST HTpcaT
k h4 sin𝜃 cos𝜃 R2 𝜎𝜖 k h4 PC1 PC2 R2 𝜎𝜖

D1 −89.9 −3.24 23.5 −21.6 0.97 3.61 −91.9 10.2 −1.64 −0.56 0.95 5.1

D2 −66.1 −0.11 17.3 −17.2 0.98 2.5 −67.0 8.31 −1.23 −0.72 0.95 3.7

D3 −28.8 3.13 9.08 −9.87 0.95 2.1 −28.4 4.88 −0.66 −0.72 0.96 1.9

D4 8.47 3.22 0.16 −0.75 0.34 1.6 9.38 0.55 −0.02 −0.33 0.70 1.1

Note. HST= hydrostatic-seasonal-time; PCA= principal component analysis.

FIGURE 17 Threshold and squared prediction error control chart for crest displacement data when (a) 6, (b) 12, and (c) 18 months of data were

used for model fitting
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a proper selection of thresholds is a challenging task. One solution is that the model parameters can be re-estimated over time

and the thresholds updated periodically as data becomes available.

Figure 17 shows threshold superimposed over SPE control chart for crest displacement (i.e., D1). The model parameters and

control limits are estimated using 6, 12, and 18 months of data, respectively, and the performance validated over the entire

available data (≈ 45 months). It can be seen that the SPE and the threshold values (see Figure 17) decrease as more data

becomes available. Moreover, the false alarm rate FA-1 and FA-2 w.r.t. UCL1 and UCL2, respectively, reduce over time as

shown in Table 5.

TABLE 5 False alarm rate of displacement and strain

measurements

Crest displacement L4 block strain
Data used FA-1 FA-2 FA-1 FA-2
(month) (%) (%) (%) (%)

6 5.5 1.1 6.7 0.62

12 5.1 1.0 1.9 0.86

18 4.7 0.9 1.5 1.1

FIGURE 18 Temperature variation at strain gauge location in L4 block

TABLE 6 HSTT model parameters estimated using the strain data in L4 block

h2 sin𝜃 exp(−t)
HSTT h (10−3) cos𝜃 sin𝜃 × cos𝜃 T t (102) R2 𝜎𝜖

𝜖p1 −7.5 4.5 −1.14 −32.4 −10.8 −13.3 −13.4 1.1 0.99 6.0

𝜖p2 2.7 −1.6 1.56 11.8 6.2 3.0 1.6 −0.5 0.97 3.2

Note. HSTT= hydrostatic, seasonal, temperature, and time.
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4.2 Application to strain data
In this section, the proposed statistical modeling framework is applied to the SG data. In HSTT model of concrete strain, the

temperature measured inside the concrete block is considered, because SGs are embedded with temperature sensors, unlike in

the case of pendulums. Figure 18 shows the variation of temperature in all six directions for the L4 block, which shows similar

magnitudes.

Moreover, fluctuations of downstream temperature are larger compared to the upstream data. This may be due to the fact that

the downstream face is exposed directly to the sun, whereas the upstream face is submerged in water.

Table 6 shows the estimated parameters of the multivariate HSTT regression model. The R2 value for compressive as well as

tensile strains is greater than 0.97 and the standard deviation of the prediction error is reasonably low.

A plot of model predictions superimposed on the actual data along with the respective residual errors are shown in Figure 19.

In order to see the importance of different variables in the model, a stepwise regression is also performed. Stepwise regression

is a systematic method for adding and removing terms from a multilinear model based on their statistical significance (e.g.,

t−statistics) in a regression. It can be seen from Table 7 that approximately 90% of variation in the strain is explained by three

predictor variables, namely, h, cos𝜃, and t.
Figure 20 shows the recursive estimation (see Equation 8) of regression coefficients for principal strains 𝜖p1 using the first

44 months of data. Initial fluctuations in the parameters can be observed due to the choice of an arbitrary covariance matrix.

However, it may be noted that the regression coefficients stabilize over time and attain their steady-state values.

Because the data is relatively short in length (just 3
1

2
years of data, which is relatively small compared to the expected life of

the dam) and the parameters are slowly changing, the effect of 𝜆 is observed to be nominal. However, it can be significant and its

FIGURE 19 HSTT model and residual for (a) tensile and (b) compressive strain in L4 block

TABLE 7 Stepwise regression summary of principal strain

Tensile strain (𝜖p1) Compressive strain (𝜖p2)
Var. R2 RMSE F (103) t-stat Var. R2 RMSE F (103) t-stat

h 0.15 56 5.5 −74 h 0.16 16 5.7 75

cos𝜃 0.64 36 28 207 cos𝜃 0.35 14 8.3 −95

t 0.94 14 182 −416 t 0.88 6 77 373

h2 0.95 13 157 −65 h2 0.9 5.4 69 406

T 0.96 12 132 −128 e−t 0.94 4 10 −157

Note. RMSE= root mean square error.
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FIGURE 20 Recursive estimation of regression coefficients for 𝜖p1 in L4 block

FIGURE 21 Predicted strains 𝜖p1 and 𝜖p2 using recursive regression model of in L4 block

effectiveness can be evaluated once more data comes available. Figure 21 gives the prediction of strain data for last 10 months

(September 2013 to June 2014) using the proposed method based on the first 33 months of data with a R2 value of 0.98.

Finally, the model performance with respect to HST and HTT models are compared. The inclusion of time variable is verified

by stepwise regression (see Table 7), which can also be verified by a prominent trend in the principal strains, as in Figure 19.

Another variation with respect to the displacement model is due to the temperature term. Because SGs have temperature sensors,

absolute temperature is included in the model, not the principal components. Hence the model is HTT not HTpcaT and given by

HTT ∶ y = ah4 + b1T + c1t + k,
HST ∶ y = ah4 + d1sin𝜃 + d2cos𝜃 + c1t + k.

(16)
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TABLE 8 Parameters estimated from HST and HTT model of principal strains in L4 block downstream

HST HTT
k h4 sin𝜃 cos𝜃 t R2 𝜎𝜖 k h4 T t R2 𝜎𝜖

𝜖p1 −402 −24 64 5.6 −37.4 0.95 13.0 −288 −15.80 −9.26 −37.3 0.97 11.1

𝜖p2 111 9 −11 0.8 13.3 0.89 5.7 92 4.30 1.60 13.5 0.88 5.9

Note. HST= hydrostatic-seasonal-time; HTT= hydrostatic-thermal-time.

FIGURE 22 X bar and range chart for principal strains. UCL= upper control limit

FIGURE 23 T2 control chart for principal strains when (a) 6, (b) 12, and (c) 18 months of data were used for modal fitting

Table 8 presents the estimated HST and HTT parameters for principal tensile and compressive strain. A comparison of R2 (see

Table 6) shows better performance of HSTT with respect to these two models. Also standard deviation of residuals is lower for

the proposed model indicating a smaller confidence interval.
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The residuals obtained from the previous step contain important information for threshold setting and anomaly detection.

The univariate mean (to detect the mean shift) and range (to detect the variability) control chart for principal strain residuals is

shown in Figure 22. The threshold is set based on normality assumption of residuals.

The mean chart shows that the dam is functioning normally. However, the false alarm rate in the range chart is high for

both cases, which is one of the difficulties encountered in individual monitoring using univariate control charts. This can be

alleviated by a simultaneous monitoring of strains using multivariate control charts. Figure 23 shows the multivariate control

chart for principal strains using T2 test statistics as discussed in Section 3, Equation 12. The HSTT model and control limits

were updated at 6-, 12-, and 18-month intervals.

As expected with more data T2 value deceases as the model parameter becomes more accurate. Table 5 shows the false alarm

rate (type I error) corresponding to 95% and 99% control limits.

5 CONCLUSIONS

This paper presents a general approach to statistically model the dam responses and monitor its performance in real time using

statistical control charts, when only the data during initial service life is available. Unlike most of the previous studies, where

hydrostatic, seasonal, and time (HST) or hydrostatic, temperature, and time (HTT) are undertaken as predictor variables, the

proposed HSTT model considers all the four variables to model the dam responses using limited sensor measurements. In this

way, the model is more robust and can be applied to multiple dam responses such as displacement, stress, or strain. In order to

check the overall dam performance, measurements from multiple sensors are included in the model where principal component

analysis is utilized as a data reduction tool. The real-time monitoring of dam responses is undertaken using univariate (for

displacement) and multivariate (for strain) control charts, where the control limits are assigned based on residuals. Test statistics

such as SPE and T2 value are used for anomaly detection in a real-time setting. Finally, to avoid noisy or unreliable measurements,

the model parameters and control limits are updated periodically resulting in lower false alarms. The main advantage of using

HSTT model compared to other statistical models (such as HST and HTT) is its better performance (in terms of model fitting),

with lower residual standard deviation (i.e., narrower confidence intervals).
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